Blog Viewer

Extremely Close Look at Electron Advances Frontiers in Particle Physics

By SRAI News posted 10-25-2018 12:00 AM

  

Excerpt from "Extremely close look at electron advances frontiers in particle physics," posted on NSF News, October 17, 2018.

An unprecedented, close examination of the electron has opened a window into the mind-bending nature of particles, energy and forces at infinitesimal scales.

The findings, showing a spherical shape for the electron's charge, emerged from the Advanced Cold Molecule Electron Electric Dipole Moment (ACME) Search , funded by the National Science Foundation (NSF). The results support the strength of the Standard Model of particle physics, a longstanding theory describing most of the fundamental forces and particles in the universe, and seems to force several alternative theories into revision.

Led by researchers from Yale, Harvard and Northwestern universities, the ACME team reported their results in the Oct. 18 issue of Nature.

Strange nature of empty space

Whether the emptiness between stars or the emptiness between molecules, experiments have shown that upon close examination, any vacuum is not truly empty. All manner of subatomic particles -- and their antimatter counterparts -- constantly pop in and out of existence and annihilate each other on contact. That environment influences the electron, its round, negative charge defined by the constant interaction.

Many theories -- involving such concepts as "supersymmetry" and "grand unification" -- posit that some undiscovered subatomic particles would be revealed if researchers were able to look closely at an electron and find that its spherical charge was slightly squashed.

That would require an extreme observation, akin to measuring an Earth-sized sphere to a precision of a few atoms' thickness.

The ACME researchers did look that closely at the electron's charge -- and found that the sphere appeared to be perfectly round.

"An electron always carries with it a cloud of fleeting particles, distortions in the vacuum around it," said John Gillaspy, program director for NSF's Atomic, Molecular and Optical Physics program. "The distortions cannot be separated from the particle, and their interactions lead to the ultimate shape of the electron's charge, called the electric dipole moment, or EDM."

For nearly a decade, NSF supported the ACME team's ever-more-precise experiments in pursuit of such observations.

"Supporting this work involved committing significant resources to a high-risk, high-reward idea," Gillaspy said. "The investment was relatively large, and the timescale was relatively long, but these new results demonstrate the risk was worth taking. When it comes to precision measurements, big advances often require a daring spirit and a large amount of patience."

Continue to full article
#NewsintheField
#NSF
0 comments
3 views

Permalink